On the Jensen functional and superterzaticity
نویسندگان
چکیده
منابع مشابه
the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test
in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...
15 صفحه اولAsymptotic behavior of alternative Jensen and Jensen type functional equations
In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...
متن کاملOn the stability of generalized d'Alembert and Jensen functional equations
where f , g are two unknown functions to be determined. Equation (A f g), raised by Wilson, is called the Wilson equation sometimes, and (Ag f ) is raised by Kannappan and Kim [9]. Let g(x) ≡ k in (Ag f ). Then we have f (x + y) + f (x − y) = 2k f (y) for all x, y ∈ G. Putting y = 0 in this equation we have f (x)= k f (0). Hence f is a constant function. Let g(y)≡ 1 in (A f g). Then we have the...
متن کاملBounds for the Normalised Jensen Functional
New inequalities for the general case of convex functions defined on linear spaces which improve the famous Jensen’s inequality are established. Particular instances in the case of normed spaces and for complex and real n-tuples are given. Refinements of Shannon’s inequality and the positivity of Kullback-Leibler divergence are obtained.
متن کاملNon-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of King Saud University - Science
سال: 2018
ISSN: 1018-3647
DOI: 10.1016/j.jksus.2017.05.010